

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

3Chi Delta 9 Peanut Butter Nuggets

ample ID: SA-240514-402 atch: 13MAY2024-D9PBN pe: Finished Product - In atrix: Edible - Chocolate hit Mass (g): 5.55726		Received: 05/16/2 Completed: 05/3		Client 3Chi 275 Medical D Carmel, IN 46 USA Lic. #: 18_0235	082
Sec.			Summary Test Cannabinoids Heavy Metals Microbials Mycotoxins Pesticides Residual Solvent	Date Tested 05/30/2024 05/24/2024 05/21/2024 05/28/2024 05/28/2024 05/28/2024 s	Status Tested Tested Tested Tested Tested Tested
0.146 %	0.181 %	0.336 %	Not Tested	Not Tested	Yes
Total ∆9-THC	CBD	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
Total Δ9-THC annabinoids by nalyte	y HPLC-PDA an	d GC-MS/MS		Result	Normalization Result
annabinoids by	y HPLC-PDA an	d GC-MS/MS			Normalization
annabinoids by nalyte 3C	y HPLC-PDA an LOD (%)	d GC-MS/MS	DQ %)	Result (%)	Normalization Result (mg/unit)
annabinoids by nalyte SC SCA	y HPLC-PDA an LOD (%) 0.00095	d GC-MS/MS	DQ %) 0284	Result (%) ND	Normalization Result (mg/unit) ND
annabinoids by malyte JC JCA JCCV	y HPLC-PDA an LOD (%) 0.00095 0.00181	d GC-MS/MS	DQ %) 0284 0543	Result (%) ND ND	Result (mg/unit) ND ND
annabinoids by malyte ac acc acc acc acc acc ac	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006	d GC-MS/MS	DQ %) 0284 0543 0018	Result (%) ND ND ND ND	Result (mg/unit) ND ND ND ND ND
annabinoids by malyte SC SCA SCV SD SDA	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081	d GC-MS/MS	DQ %) 0284 0543 0018 0242	Result (%) ND ND ND 0.181	Normalization Result (mg/unit) ND ND ND ND ND 10.0
annabinoids by malyte SC SCA SCV SD SDA SDA SDV SDVA	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00001	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013	Result (%) ND ND ND 0.181 ND ND ND ND	Normalization Result (mg/unit) ND ND ND ND 10.0 ND
annabinoids by halyte BC BCA BCA BCA BCA BDA BDA BDV BDVA BG	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00057	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172	Result (%) ND ND ND 0.181 ND ND ND 0.00663	Normalization Result (mg/unit) ND ND ND ND 10.0 ND ND ND ND ND ND 0.368
annabinoids by nalyte 3C 3CA 3CV 3DA 3DA 3DV 3DV 3DV 3DV 3C 3GA	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00027 0.00049	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147	Result (%) ND ND ND 0.181 ND ND ND 0.00663 ND	Normalization Result (mg/unit) ND ND ND 10.0 ND ND ND ND ND ND 0.368 ND
annabinoids by halyte BC BCA BCA BCA BDA BDA BDV BDVA BCA BCA BCA BCA BCA BCA	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00061 0.00012 0.00021 0.00021 0.00029 0.0012	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335	Result (%) ND ND ND 0.181 ND ND ND 0.00663 ND ND	Normalization Result (mg/unit) ND ND ND 10.0 ND ND ND ND ND 0.368 ND ND ND 0.368 ND ND
annabinoids by malyte SC SCA SCV SDA SDA SDV SDVA SG SGA SL SLA	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00061 0.00021 0.00021 0.00021 0.00029 0.00112 0.00124	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371	Result (%) ND ND ND 0.181 ND ND ND 0.00663 ND ND ND ND ND ND	Normalization Result (mg/unit) ND ND ND ND ND ND ND ND 0.368 ND ND ND ND ND ND ND ND ND ND ND
annabinoids by malyte sca sca scv sco sco sco sca sca sca sca sca sca sca sca sca sca	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00021 0.00021 0.00024 0.00112 0.00124 0.00056	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND 0.00231	Normalization Result (mg/unit) ND ND ND ND ND ND ND ND 0.368 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by malyte sc sca scv scv scv scv scv scv sca scv sca sca sca sca sca sca sca sca sca sca	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 00181	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND 0.00231 ND	Normalization Result (mg/unit) ND ND ND ND ND ND ND 0.368 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BC BCA BC BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00061 0.00021 0.00021 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006 0.0006	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 00181 0054	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND ND 0.00231 ND ND	Normalization Result (mg/unit) ND ND ND ND ND ND ND ND 0.368 ND ND ND ND ND 0.128 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by malyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00011 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00124 0.00164	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 10181 0054 0054 00312	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND ND 0.00231 ND ND ND ND ND ND	Normalization Result (mg/unit) ND ND ND ND ND ND ND N
annabinoids by malyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00124 0.00056 0.0006 0.0018 0.00104 0.00104	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 10181 1054 1056 1057 1	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND ND 0.00231 ND ND ND ND 0.00231 ND ND 0.146	Result (mg/unit) ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00011 0.00021 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006 0.0018 0.00104 0.00104 0.00164 0.00076 0.00084	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 10181 1054 1056 1057 1056 1056 1056 1056 1056 1057 1056 1057 1056 1057 1	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND 0.00231 ND ND 0.00231 ND ND 0.146 ND	Result (mg/unit) ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by nalyte 3C 3CA 3CA 3CV 3D 3DA 3DA 3DA 3DV 3DA 3DA 3DV 3DA 3C 3CA 3CA 3CA 3CA 3CA 3CA 3CA 3CA 3CA	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00011 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00164 0.00164 0.00164 0.00164 0.00076 0.00084 0.00076	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 10181 1054 10312 0227 10251 0206	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00231 ND ND 0.00231 ND ND 0.00231 ND ND 0.146 ND ND 0.146 ND	Normalization Result (mg/unit) ND ND ND ND ND ND ND ND 0.368 ND ND ND 0.128 ND ND ND 0.128 ND ND ND 8.13 ND <loq< td=""></loq<>
annabinoids by nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	y HPLC-PDA an LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00011 0.00021 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006 0.0018 0.00104 0.00104 0.00164 0.00076 0.00084	d GC-MS/MS	DQ %) 0284 0543 0018 0242 0013 0182 0063 0172 0147 0335 0371 0169 10181 1054 1056 1057 1056 1056 1056 1056 1056 1057 1056 1057 1056 1057 1	Result (%) ND ND ND ND 0.181 ND ND 0.00663 ND ND 0.00663 ND ND 0.00231 ND ND 0.00231 ND ND 0.146 ND	Result (mg/unit) ND ND ND ND ND ND ND ND ND ND ND ND ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 05/30/2024

Tested By: Nicholas Howard

sted By: Nicholas Howard Scientist Date: 05/30/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are norvide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

3Chi Delta 9 Peanut Butter Nuggets

Sample ID: SA-240514 Batch: 13MAY2024-D Type: Finished Produ Matrix: Edible - Choc Unit Mass (g): 5.55726	9PBN ct - Ingestible olate	Received: 05/16/2024 Completed: 05/30/2024	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Heavy Metals	s by ICP-MS		
Heavy Metals Analyte	s by ICP-MS	LOQ (ppm)	Result (ppm)
		LOQ (ppm) 0.02	Result (ppm)
Analyte	LOD (ppm)		
Analyte Arsenic	LOD (ppm) 0.002	0.02	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/30/2024

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 05/24/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 17025/2017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

3Chi Delta 9 Peanut Butter Nuggets

Sample ID: SA-240514-40257 Batch: 13MAY2024-D9PBN Type: Finished Product - Ingestible Matrix: Edible - Chocolate Unit Mass (g): 5.55726

Received: 05/16/2024 Completed: 05/30/2024 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Pesticides by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Bifenazate	30	100	ND	Metalaxyl	30	100	ND
Bifenthrin	30	100	ND	Methiocarb	30	100	ND
Boscalid	30	100	ND	Methomyl	30	100	ND
Carbaryl	30	100	ND	Mevinphos	30	100	ND
Carbofuran	30	100	ND	Myclobutanil	30	100	ND
Chloranthraniliprole	30	100	ND	Naled	30	100	ND
Chlorfenapyr	30	100	ND	Oxamyl	30	100	ND
Chlorpyrifos	30	100	ND	Paclobutrazol	30	100	ND
Clofentezine	30	100	ND	Permethrin	30	100	ND
Coumaphos	30	100	ND	Phosmet	30	100	ND
Cypermethrin 🤇	30	100	ND	Piperonyl Butoxide	30	100	<rl< td=""></rl<>
Daminozide	30	100	ND	Prallethrin	30	100	ND
Diazinon	30	100	ND	Propiconazole	30	100	ND
Dichlorvos	30	100	ND	Propoxur	30	100	ND
Dimethoate	30	100	ND	Pyrethrins	30	100	ND
Dimethomorph	30	100	ND	Pyridaben	30	100	ND
Ethoprophos	30	100	ND	Spinetoram	30	100	ND
Etofenprox	30 <	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30 <	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
Fludioxonil	30	100	ND	Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/30/2024

Tested By: Anthony Mattingly Scientist

Date: 05/30/2024 Date: 05/28/2024 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

3Chi Delta 9 Peanut Butter Nuggets

Sample ID: SA-240514- Batch: 13MAY2024-D9f Type: Finished Product Matrix: Edible - Chocol Unit Mass (g): 5.55726	PBN t - Ingestible late	Received: 05/16/2024 Completed: 05/30/2024	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #:18_0235
Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
		LOQ (ppb)	Result (ppb)
Analyte		LOQ (ppb) 5 5	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/30/2024

Tested By: Anthony Mattingly Scientist

Date: 05/30/2024 Date: 05/28/2024 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Not Detected per 1 gram

5 of 7

3Chi Delta 9 Peanut Butter Nuggets

Sample ID: SA-240514-40257 Batch: 13MAY2024-D9PBN Type: Finished Product - Ingestible Matrix: Edible - Chocolate Unit Mass (g): 5.55726		d: 05/16/2024 ted: 05/30/2024	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Microbials by PCR an	d Plating		
Microbials by PCR an Analyte	d Plating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
		Result (CFU/g)	Result (Qualitative)
Analyte	LOD (CFU/g)		Result (Qualitative)
Analyte Total aerobic count	LOD (CFU/g) 10	ND	Result (Qualitative)

Shiga-toxin producing E. coli (STEC)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/30/2024

lack fineston

Tested By: Jade Pinkston Microbiology Technician Date: 05/21/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

3Chi Delta 9 Peanut Butter Nuggets

Sample ID: SA-240514-40257 Batch: 13MAY2024-D9PBN Type: Finished Product - Ingestible Matrix: Edible - Chocolate Unit Mass (g): 5.55726

Received: 05/16/2024 Completed: 05/30/2024 Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Residual Solvents by HS-GC-MS

Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/30/2024

Tested By: Kelsey Rogers Scientist Date: 05/24/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 7

3Chi Delta 9 Peanut Butter Nuggets

Sample ID: SA-240514-40257 Batch: 13MAY2024-D9PBN Type: Finished Product - Ingestible Matrix: Edible - Chocolate Unit Mass (g): 5.55726

Received: 05/16/2024 Completed: 05/30/2024

Client

3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (ppn	n) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Bifenazate	5000	Metalaxyl	15000
Bifenthrin	500	Methiocarb	30
Boscalid	10000	Methomyl	100
Carbaryl	500	Mevinphos	30
Carbofuran	30	Myclobutanil	9000
Chloranthranilipro	ble 40000	Naled	500
Chlorfenapyr	30	Oxamyl	200
Chlorpyrifos	30	Paclobutrazol	30
Clofentezine	500	Permethrin	20000
Coumaphos	30	Phosmet	200
Cypermethrin	1000	Piperonyl Butoxide	8000
Daminozide	30	Prallethrin	400
Diazinon	200	Propiconazole	20000
Dichlorvos	30	Propoxur	30
Dimethoate	30	Pyrethrins	1000
Dimethomorph	20000	Pyridaben	3000
Ethoprophos	30	Spinetoram	3000
Etofenprox	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500
Fludioxonil	30000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
B1	5 B2	5
Ochratoxin A	5	

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.